Napadi uskraćivanjem resursa
CCERT-PUBDOC-2006-07-162
Sigurnosni problemi u računalnim programima i operativnim sustavima područje je na kojem CARNet CERT kontinuirano radi.

Rezultat toga rada ovaj je dokument, koji je nastao suradnjom CARNet CERT-a i LS&S-a, a za koji se nadamo se da će Vam koristiti u poboljšanju sigurnosti Vašeg sustava.

CARNet CERT, www.cert.hr - nacionalno središte za sigurnost računalnih mreža i sustava.

LS&S, www.lss.hr - laboratorij za sustave i signale pri Zavodu za električke sustave i obradbu informacija Fakulteta elektrotehnike i računarstva Sveučilišta u Zagrebu.

Ovaj dokument predstavlja vlasništvo CARNet-a (CARNet CERT-a). Namijenjen je za javnu objavu, njime se može svatko koristiti, na njega se pozivati, ali samo u originalnom obliku, bez ikakvih izmjena, uz obavezno navođenje izvora podataka. Korištenje ovog dokumenta protivno gornjim navodima, povreda je autorskih prava CARNet-a, sukladno Zakonu o autorskim pravima. Počinitelj takve aktivnosti podliježe kaznenoj odgovornosti koja je regulirana Kaznenim zakonom RH.
Sadržaj

1. UVOD ...4

2. DOS NAPADI ..5

3. DOS NAPADI NA APLIKACIJSKOM SLOJU ..6
 3.1. Napadi preko korisničkih imena ..6
 3.2. Napadi orijentirani na transakcije ..7
 3.3. Napadi na bazi podataka ..7
 3.4. Napadi zasnovani na iscrpljivanju jedinstvenog identifikatora sjednice ..7
 3.5. Napadi zasnovani na prepisivanju spremnika ..7
 3.6. Napadi zasnovani na nemogućnosti otpuštanja zauzetih objekata ili resursa8
 3.7. Napadi zasnovani na prevelikim zahtjevima napadača ...8
 3.8. Napadi zasnovani na kreiranju programskih objekata ...9
 3.9. Napadi na sistemsko dnevničke zapise ...9
 3.10. Napadi korištenjem elektroničke pošte ..9

4. DOS NAPADI NA MREŽNOM SLOJU ...9
 4.1. Napadi korištenjem posebno oblikovanih mrežnih paketa ..10
 4.1.1. Napadi pretrpavanja paketima s postavljenom SYN zastavicom ...10
 4.1.2. Napadi pretrpavanja otvorenim vezama ..11
 4.1.3. Napadi pretrpavanja paketima s postavljenom ACK zastavicom ...11
 4.1.4. Napadi pretrpavanja ICMP paketima ...11
 4.1.5. Napadi pretrpavanja UDP paketima ..12
 4.1.6. Smurf napadi ...12
 4.1.7. Fraggle napadi ..12
 4.1.8. Targa3 napadi ..12
 4.1.9. Napadi fragmentacijom paketa ..12
 4.1.10. Ping of Death napad ...13
 4.1.11. Land napadi ..13
 4.2. Raspođeljeni napadi ..13
 4.2.1. DDoS napadi ..13
 4.2.2. DRDoS napadi ..15

5. ZAŠTITA OD DOS NAPADA ..16
 5.1. Prevencuske strategije ..17
 5.1.1. Pripreme za napad ...17
 5.1.2. Procjenjena usluga koje bi mogle biti metom napada ..17
 5.1.3. Suradnja s davateljem Internet usluga ...17
 5.1.4. Organiziranje rezervnih resursa ...17
 5.1.5. Postupci u slučaju napada ...18
 5.1.6. Osiguranje ...18
 5.2. Tehničke strategije ..18
 5.2.1. Detekcija napada ..18
 5.2.2. Filtriranje mrežnog prometa na usmjjerivačima ...18
 5.2.3. Ograničavanje prolaska paketa kod davatelja Internet usluga ..18
 5.2.4. Segmentacija mrežnog prometa ..19
 5.2.5. Obrana od napada koji su u tijeku ...19

6. ZAKLJUČAK ..20

7. REFERENCE ..20
1. **Uvod**

Napadi uskraćivanja resursa (eng. DoS - *Denial of Service*) su aktivnosti poduzete od strane zlonamjernih korisnika sa ciljem onemogućavanja ispravnog funkcioniranja različitih računalnih i/ili mrežnih resursa čime određene usluge postaju nedostupne. Često korišten izraz u hrvatskoj literaturi je i DoS stanje, a odnosi se na vremenske trenutke nepravilnog rada ili potpune onemogućenosti funkcioniranja aplikacija i računalnih ili mrežnih usluga. Činjenica da je Internet izgrađen od konačnog broja mrežnih komponenta te da računalni sustavi ne raspolažu s neograničenim količinama procesne moći, pridonosi ishodima ovakvih napada.

Dokument je koncipiran tako da opiše većinu poznatih DoS napada i pri opisu pruži kraći osvrt na načine obrane od istih. Pri tome su napadi grupirani prema logičnoj podjeli, što nije uvijek moguće jasno izvesti budući da se nekim napadima svojstva mogu ubrojiti u jednu ili drugu skupinu. Na kraju dokumenta opisane su i osnovne prevencijske i tehničke metode zaštite od DoS napada.
2. DoS napadi

Vrijeme kada se korisnicima Interneta moglo vjerovati je prošlo. Nažalost, uz tako velik broj korisnika svakodnevno priključenih na Internet, među njima se razotkriva sve veći broj zlonamjerno orijentiranih korisnika. Ti pojedinci kojima je u interesu onemogućavati normalno korištenje računala i Interneta, čine to različitim oblicima devijantnog ponašanja. Jedan od takvih devijantnih oblika njihovog ponašanja su i napadi zasnovani na uskraćivanju resursa (DoS). Razlozi za pokretanje ovakvih napada mogu biti raznoliki, a ne zahtijevaju veliko stručno predznanje jer ih je moguće izvršavati koristeći različite alate pisane upravo za ovakve svrhe, ali isto tako i alate čija je temeljna namjena sasvim drugačija. Čest razlog za njihovo pokretanje je uglavnom obijest zlonamjernih korisnika.

Najčešći oblici napada usmjereni su u pravilu na pojedine web stranice u svrhu onemogućavanja ispravnog rada ili funkcioniranja uopće. Zanimljivij primjer dogodio se 2001. godine u Americi kada je trinaestogodišnji mladić onemogućavao ispravno funkcioniranje web stranice tvrtke Gibson Research Corporation (www.grc.com). Prijave FBI uredu, kao i davateljima Internet usluga su bile uzaludne jer se te organizacije tada nisu htjele iz različitih razloga pozabaviti ovim problemom. Vlasnik je osobno preuzeo inicijativu i otkrio kako se radi o navedenom mladiću koji je jedva znao šta čini, a pogotovo nije bio u stanju razviti usmjerenje potrebno za ovakve napade. Gotovo 500 računala sudjelovalo je u napadu na navedeni poslužitelj bez spoznaje svojih vlasnika, a količina zlonamjernih paketa koji su opterećivali poslužitelj približila se brojci od 20GB. Napadima je upravljano pomoću IRC poslužitelja, a kao trojanski konj korišten je alat Sub7Server koji je čak i automatizirano instalirao svoje nove inačice na zaraženom računalu te služio kao poslužitelj s kojeg su se izvodili napadi.

Da bi uzrokovali uvjete nedostupnih resursa, napadači mogu izvršiti različite oblike destruktivnih aktivnosti:

- rušenjem pojedinih aplikacijskih servisa (HTTP, električna pošta, itd.), napadači onemogućavaju legitime korisnike u pristupanju istima,
- onemogućivanje pristupa pojednim aplikacijskim servisima napadači mogu obaviti i postavljanjem izrazito velikog broja zahtjeva na ciljane servise čime poslužitelj nije u mogućnosti odgovoriti na sve upite ili su odgovori toliko spori pa se servis može proglasiti nefunkcionalnim,
- napadima na komunikacijske uređaje napadači mogu ili onemogućiti komunikacijski link ili ga usporiti na granicu neuporabivosti,
- neovlaštenom izmjenom konfiguracijskih podataka napadači uzrokuju neispravno ponašanje servisa ili računala (npr. neovlaštenom promjenom tablica usmjeravanja na usmjerivačima, napadači uzrokuju nepravilno usmjeravanje mrežnih paketa), itd…

Od iznimne važnosti je napomenuti da se DoS napadi mogu dogoditi i spontano (nenamjerno), iako su rijetki. Konkretno, specifikacija nekog protokola može biti korektno izvedena, ali se tek dugotrajnim funkcioniranjem istog primijeti da kod npr. povećanog broja zahtjeva za nekim resursom, sustav bez razloga biva opterećen dulje nego je to potrebno. Rezultat je stanje onemogućenog korištenja resursa, ali nije uzrokovano osmišljenim napadom. Napadi uskrćivanjem usluga najčešće se obavljaju od strane udaljenih napadača pa se globalno dijele na dvije skupine prema sloju odnosno nivou sedmo-slojnog OSI modela na kojeg su usmjereni. Na taj način moguće ih je podijeliti u dvije skupine:
- napadi usmjereni na aplikacijski sloj i

3. DoS napadi na aplikacijskom sloju

3.1. Napadi preko korisničkih imena

Zlonamjerni napadači pronalaze korisnička imena na različite načine. Ukoliko mehanizam prijavljivanja različito opisuje pogrešku uzrokovano nepostojecom korisničkim imenom, a različito opisuje pogrešku uzrokovano pogrešnom zaporkom, zlonamjernim napadačima olakšan je postupak detekcije legitimnih korisničkih imena. Stoga se od aplikacija zahtjeva prijavljivanje iste pogreške kako za neispravno korisničko ime, tako i za pogrešnu zaporku.

Sigurnost mehanizma prijave može se podići na višu razinu ako se određenom korisniku zabrani mogućnost prijave nakon određenog broja unosa netočnih zaporki. Ipak, taj opcija posjeduje jedan veliki nedostatak. Naime, ako deblokiranje računa zahtijeva administratorsku intervenciju, zlonamjerni napadač može legitimnom korisniku ograničiti uslugu blokirajući njegov račun. Tu postoji mogućnost zabranjivanja ponovnog prijavljivanja s IP adrese s koje su detektirani neuspješni pokušaji, ali ta metoda može biti neefikasna jer se pomoću posrednih (eng. proxy) poslužitelja izvorište lako mijenja. Zbog svih prethodno navedenih razloga, najučinkovitija opcija je korišćenje zaključavanja na određeni vremenski period nakon kojeg se korisnikov račun automatski otključa i biva osposobljen za korišćenje.

Aplikacije koje zahtijevaju registraciju novih korisnika, podložne su napadima iscrpljivanja resursa ukoliko se proces registracije automatizira, a veliki broj registrovanih korisnika se potom iskoristi za različite oblike napada. Rješenje za ovaj potencijalni nedostatak stvara različite potencijale za uspješnost zlonamjernog napadača, te njihovo prikazivanje tijekom registracije u obliku slikovnog formata. Programi za optičko prepoznavanje znakova u nemogućnosti su prepoznati izobličene znakove te je na taj način spriječena automatska registracija korisnika. Drugi najčešće korišćeni načini nisu moguća na podacima o adresi elektronske pošte, ali se taj način može relativno jednostavno automatizirati pa stoga nije najbolja opcija.

3.2. Napadi orijentirani na transakcije

Svaka transakcija koju aplikacija napravi zahtjeva određeni intervall procesorskog vremena i podatkovnog mjesta. Neke transakcije poput slanja SMS poruka putem Interneta imaju i financijske troškove. Napad uskraćivanja resursa je moguće izvršiti i obavljajem velikih količina transakcija što može dovesti do onemogućenja uobičajenog rada aplikacije ili do većih financijskih troškova.

3.3. Napadi na baze podataka

3.4. Napadi zasnovani na iscrpljivanju jedinstvenog identifikatora sjednice

Budući da HTTP protokol nije temeljen na stanjima, veze prema nekom poslužitelju nije moguće dovesti u odnos radi provjeravanja da li isti korisnik pristupa dvjema stranicama s poslužitelja. Stoga se svaki jedinstven identifikator sjednice (eng. session ID) mora generirati prilikom prvnog pristupa stranici, što oduzima procesorske resurse, i pohraniti nekamo, što oduzima podatkovni prostor. Napad se može izvršiti slanjem zahtjeva za velikim brojem jedinstvenih identifikatora sjednice što će na različite načine iscrpit resurse s tima što se onemogućiti rad ostalim korisnicima. Ovakav napad može biti moguć ako aplikacija generira taj broj preko HTTP-ja. Ukoliko se najprije zahtijeva autentikacija, mogućnost ovih napada je smanjena jer se korisnik može samo jednom prijaviti. Ipak, ako je dozvoljeno više sjednica po jednom korisniku, tada je aplikacija i dalje ranjiva. Najsigurnije rješenje za ove vrste napada je dozvoljavanje jedne sjednice po korisniku te onemogućavanje automatskih registracija novih korisnika što je pojašnjeno prethodnim poglavlje.

3.5. Napadi zasnovani na prepisivanju spremnika

Kako je već objašnjeno, funkcioniranje aplikacije uvelike ovisi o predviđanjima programera na temelju kojih je aplikacija razvijana. Najčešće se pogreške događaju kod upravljanja memorijom i zauzimanja iste i to kod jezika koji zahtijevaju takav pristup, kao što su npr. C i C++. Jednostavan
programski isječak koji dovodi do pogreške prepisivanja spremnika (eng. buffer overflow) u jeziku C može se vidjeti na sljedećem primjeru.

```c
void prepisivanje(char *niz) {
    char spremnik[10]; /* Zauzimanje memorije */
    strcpy(spremnik, niz); /* Opasna funkcija kojom se parametar niz nepoznate veličine kopira u spremnik fiksne veličine */
}

int main() {
    char *niz = "Ovaj niz sigurno sadrži više od 10 znakova!";
    prepisivanje(niz);
    return EXIT_SUCCESS;
}
```

Pogreška izazvana ovim programskim kodom uzrokuje stvaranje datoteke sa sadržajem memorije na dijelu gdje je došlo do pogreške i prekid izvršavanja programa. Na Windows platformama pogreška izaziva upozorenje vidljivo na sljedećoj slici:

![Slika 1: Prijava pogreške prepisivanja spremnika kod izvođenja aplikacije](image)

Primjerom prikazana pogreška može se lako izbjeći pažljivijim razvojem aplikacije, ali kod dinamičkih unosa kod web aplikacija vjerojatnost pojave pogrešaka prepisivanja spremnika višestruko se povećava. Korištenje programskih jezika višeg nivoa poput Java, PHP ili C# onemogućuje kontrolu na nižem nivou, ali i onemogućuje pogreške ovog tipa. Zlonamjerni korisnik može uočavanjem ovakvih propusta vrlo jednostavno uzrokovati stanje uskraćivanja aplikacijskih usluga.

3.6. Napadi zasnovani na nemogućnosti otpuštanja zauzetih objekata ili resursa

Najčešća pogreška ovog tipa je kod programskih jezika gdje se zauzet objekti moraju eksplicitno osloboditi od strane programera. Kod C/C++ jezika to se uglavnom događa sa zauzetom memorijom koja se ne oslobodi nakon regularnog završetka programa, a pogotovo nakon neregularnog završetka. To dovodi do tzv. curenja memorije (eng. memory leak). Kod jezika poput Java često se ne predvide svi mogući završetki izvođenja programa pa resursi poput veza na bazu podataka ostaju zauzeti i po završetku programa, a nakon određenog broja stvorenih i nezatvorenih veza, rad s bazom podataka postaje otežan te končano i onemogućen. Ukoliko napadač uoči pogreške ovog tipa, vrlo lako ih može izazvati i time uzrokovati stanje nepravilnog funkcioniranja sustava.

3.7. Napadi zasnovani na prevelikim zahtjevima napadača

Ukoliko se korisniku omogući izravan ili neizravan unos podataka bez dovoljne provjere, a isti se podaci koriste kao uvjet programske petlje, aplikaciju se može smatrati podložnom DoS napadima. Pretpostavi li se rad s aplikacijom koja ispisuje informacije o određenom broju osoba pri čemu korisnik definira broj korisnika o kojima će biti ispisane informacije, korisnik tu lako može otežati rad aplikacije. Na primjer, unosom broja koji dodeže najveću vrijednost cjelobrojne 32 bitne varijable,
sigurno će doći do velikog usporenja sustava, zauzeća memorije, opterećenja sustava za upravljanje bazama podataka i sl. Stoga je uvijek potrebno ograničiti mogućnost korisničkih unosa, pogotovo kada oni izravno utječu na izvršavanje programa.

3.8. Napadi zasnovani na kreiranju programskih objekata
Jednostavan programski kod poput narednog primjera pokazuje način na koji se može korisniku omogućiti stvaranje proizvoljnog broja novih objekata.

```java
String TotalObjects = request.getParameter("numberofobjects");
int NumOfObjects = Integer.parseInt(TotalObjects);
ComplexObject[] anArray = new ComplexObject[NumOfObjects]; // opasno!
```

Posljednja linija instancira u polju `anArray` onoliko objekata koliko iznosi parametar `NumOfObjects`. Upravo iz tog razloga brojni programski jezici ne dozvoljavaju instaliranje polja ugrađenih tipova ili objekata koristeći varijable, nego samo koristeći konstante, vrijednosti koje se nužno programski definiraju i korisnik ih ne može mijenjati.

3.9. Napadi na sistemske dnevničke zapise
Različiti programi koriste dnevničke (eng. log) zapise kako bi zabilježili svoje aktivnosti. Uzrokujući velik broj dugih zapisa u log datotekama, moguće je popuniti diskovni prostor. Primjerice, poslužitelj koji bilježi sve nadolazeće zahtjeve može biti meta automatiziranog napada dugim zahtjevima. Rješenje za ovaj oblik DoS napada nalazi se u pažljivom određivanju podataka prilikom osmišljavanja i implementacije aplikacije, kako se ne bi omogućio upis ogromnim količinama podataka i tako ostvarili povoljni uvjeti za izvršavanje DoS napada.

3.10. Napadi korištenjem elektroničke pošte
Najjednostavniji oblik napada na pretince elektroničke pošte sastoji se od odašiljanja velikih količina elektroničkih poruka na ciljnu adresu. Efektivne DoS napade moguće je izvesti i postavljanjem lažne izvorne adrese poruke elektroničke pošte. Primjerice, postavljanje poruke na `usenet` grupu pri čemu se koristi tuđa adresa, uzrokovat će dolazak neželjenih spam poruka na žrtvu adresu, a ovisno o sadržaju, moguće su i poruke od legitima korisnika koji nemaju saznanja da se radi o prijevari. Rješenje se može naći u ograničavanju odašiljanja poruka elektroničke pošte s neznanom adrese. Primjerice, postavljanje poruke na `usenet` grupu pri čemu se koristi tuđa adresa, uzrokovat će efektivno blokiranje veze uzvrat. Odašiljanje velikog broja poruka na nepostojeće adrese, pri čemu je porukama lažirana izvorna adresa, uzrokovat će velik broj prijava nemogućnosti isporuke tih poruka, ali na adresu koja je upisana kao izvorna – žrtvina adresa. Jedan od mogućih napada na način adresiranja elektroničke pošte jest prijavljivanje te adrese za primanje obavijesti pojedinih stranica, ali taj napad se lako spriječi zahtijevanjem validacije dane adrese.

4. DoS napadi na mrežnom sloju
Cilj DoS napada na mrežnom sloju je onemogućavanje ispravnog funkcioniranja mrežnih usluga i komunikacijskih kanala. Navedeno je moguće postići na dva načina:

- pretrpavanjem komunikacijskih kanala (eng. flooding attacks)
- iskorištavanjem ranjivosti mrežnih usluga i protokola (eng. vulnerability attacks).

Napadi su uglavnom usmjereni na zauzeće komunikacijskog kanala i onemogućavanja uspostave veze pa su to napadi koji za cilj imaju pretrpavanje računalnih i mrežnih resursa. Drugi najčešći tip su napadi koji iskorištavaju ranjivosti u mrežnim uslugama. Napadi pretrpavanjem komunikacijskog kanala izvode se slanjem velike količine podataka na mrežu što uzrokuje nemogućnost normalnog prenošenja legitimnih podataka. Odašiljanje velike količine zahtjeva za uspostavom veze onemogućit će rad računalnih resursima i računalo više neće biti u mogućnosti obrađivati legitimne zahtjeve niti uspostaviti vezu s legitimnim korisnikom. Pri tome napadači uobičajeno lažiraju izvorne IP adrese ili ignoriraju odgovore.

Najjednostavniji oblik napada, s obzirom na broj računala uključenih u napad, jest situacija u kojoj se napad izvodi s jednog računala, a odredište je također jedno računalo. Efektivnije mogućnosti zasnovane su na korištenju više računala kao izvora napada, pri čemu jedno računalo predstavlja
žrtvu. Međutim, napadi iz više izvora na više ciljeva, kao ni napadi na više ciljeva iz jednog izvora, nisu rijetkost.

4.1. Napadi korištenjem posebno oblikovanih mrežnih paketa

Opis napada zasnovanih na posebnom oblikovanju mrežnih paketa pretpostavlja poznavanje važnijih mrežnih protokola i pojmovana vezanih uz njih. U ovom dokumentu pojašnjeni su samo najznačajniji pojmovi.

TCP (eng. Transmission Control Protocol) označava protokol koji određuje način komuniciranja između računala. Protokol je zadužen za uspostavu, održavanje i prekid veze. Uspostavljanje veze korištenjem TCP protokola naziva se „Three-Way Handshake“, a odvija se postavljanjem odgovarajućih zastavica (eng. flag) u mrežnim paketima. Uloga zastavica upravo je određivanje sadržaja i tipa paketa. Primjerice, zastavica SYN (eng. synchronize) koristi se kod uspostave veze, ACK (eng. acknowledge) se koristi kao potvrda za primljeni paket, a zastavica FIN (eng. finish) se koristi za prekid uspostavljene veze.

Uspostava veze odvija se na način da klijent pošalje poslužitelju paket s postavljenom zastavicom SYN. Ukoliko poslužitelj može uspostaviti vezu s klijentom, poslužitelj mu vraća paket s postavljenim SYN i ACK zastavicama kao potvrdu o otvaranju veze s njegove strane. Ako pak nije u mogućnosti uspostaviti vezu, vraća ICMP paket ili paket s postavljenim RST i ACK zastavicama. Konkretno, kada klijent primi paket sa SYN/ACK zastavicama, odgovara paketom s postavljenom RST zastavicama i razmjena podataka može početi. Grafički je uspostavljanje veze između klijenta i poslužitelja prikazano na slici *Slika 2*, a prikaz mrežnog prometa analiziran alatom Ethereal dan je na slici *Slika 3*.

4.1.1. Napadi pretrpavanja paketima s postavljenom SYN zastavicom

Ne postoji jednostavan način za pronađenje izvora ovih napada jer im je izvorna adresa lažna. Obrana se može temeljiti na detektiranju povećanog broja primljenih SYN paketa. U tom slučaju se stvaraju privremene datoteke na računala unutar kojih se bilježe podaci o mogućim uspostavama veza,
a datoteke se nazivaju SYN-kolačićima (eng. SYN-cookie). Ukoliko se prvi odgovarajući ACK paket, alociraju se potrebni resursi za omogućavanje nove veze. Drugo rješenje je konfiguriranje vatrozida kao tzv. SYN-proxy poslužitelja. Tada vatrozid umjesto poslužitelja zaprime veze i tek kada je veza uspješno uspostavljena, vatrozid prosljeđuje zahtjeve poslužitelju simulirajući proces uspostave veze u tri koraka.

Slika 3: Uspostava TCP veze s www.cert.hr u tri koraka

4.1.2. Napadi pretrpavanja otvorenim vezama
Napad izvorno izvođen korištenjem Naptha alata, samo je proširenje napada pretrpavanjem SYN paketima. Izvorna zamisao je ostvariti što veći broj uspostavljenih veza prema napadnutom sustavu, najčešće je riječ o web poslužiteljima, kako bi ih onemogućili u ispravnom funkcioniranju. Cilj ostvarivanja velikog broja uspješno otvorenih veza je iscrpljivanje ograničenog broja mrežnih priključaka (eng. socket) na napadnutom računalu. Obrana se temelji na brojanju otvorenih veza i ograničavanju količine uspješno ostvarenih veza u sekundi. Drugi način za obranu ne postoji, jer je količina mrežnog prometa generirana ovim napadima vrlo mala i veza se uspostavlja na potpuno ispravan način.

4.1.3. Napadi pretrpavanja paketima s postavljenom ACK zastavicom
Iz navedene procedure uspostavljanja veze u tri koraka moguće je iskoristiti još jedan način napada, a to je generiranjem paketa s postavljenom ACK zastavicom. Napadnuto računalo dodijelit će određeno procesorsko vrijeme obradi primljenog paketa, kako bi na posljektu ustanovilo da se radi o paketu koji nije namijenjen njemu, odnosno kojemu nije prethodio SYN paket. Velika količina primljenih paketa onemogućit će ispravno funkcioniranje računala.

4.1.4. Napadi pretrpavanja ICMP paketima
U slučaju kada velika količina ICMP paketa, tipa ECHO REQUEST, optereti poslužitelj zahtijevajući povratne odgovore, resursi napadnutog sustava se u određenom trenutku optereće u tolikoj mjeri da nisu u mogućnosti zadovoljiti pristigle legitimne mrežne pakete. Ukoliko se napadačevo računalo nalazi na sporijoj vezi nego je napadnuto računalo te ukoliko se napad izvede na pogrešan način, mogući ishod napada može biti pretrpavanje računala zlonamjernog korisnika velikim količinama ICMP odgovora. Jedno od mogućih rješenja nalazi se u ograničavanju broja ICMP paketa u jedinici vremena pri čemu se svi ostali odbacuju kada je prag prieđen. Također, moguće je i u potpunosti zabraniti ICMP pakete na ulazu u mrežni segment. Ovakvi napadi često se izvršavaju na DNS poslužiteljima kako bi onemogućili legitimne korisnike u pristupu željenim odredištima preko naziva tih odredišta (web, ftp, …).
4.1.5. Napadi pretrpavanja UDP paketima

UDP (eng. User Datagram Protocol) je izvorno zamišljen i implementiran kao protokol koji ne zahtijeva prethodnu uspostavu veze između dviju točaka Interneta kako bi mogao prenositi podatke. Stoga ovakvim napadima nije moguće jednostavno izvoditi pretrpavanje paketima koje bi onemogućilo stabilan rad sustava. Međutim, usmjeravanje paketa na nepostojeću (slučajno generiranu) pristupnu točku (port), uzrokuje od strane određenog sustava provjeru postoji li neka usluga koja je otvorila taj port. Ukoliko ne postoji, napadnuti sustav odgovara ICMP paketom kako ne može dosegnuti traženi port. Paket odgovora usmjeren je na adresu pročitanu iz zahtjeva. Ukoliko je ona lažna, paket će nakon nekog vremena biti odbačen. Dovoljno velika količina ovakvih paketa ne samo da može onemogućiti napadnuto računalo u izvršavanju uobičajenih funkcija, nego je moguća i situacija u kojoj će se i količina prometa mrežom drastično povećati te će se otežati legitimno prometovanje mrežom.

4.1.6. Smurf napadi

4.1.7. Fraggle napadi

Iдеja Fraggle napada preuzeta je od Smurf napada, ali za razliku od Smurf napada koji koriste ICMP pakete, Fraggle koristi UDP pakete. UDP paketi se pri tome šalju na broadcast adresu mreže. Uklanjanje ovog napada je otežano jer korištenje UDP protokolata često nije moguće zabraniti kao što je slučaj s ICMP protokolom. UDP se često koristi kod različitih aplikacija koje ne traže potvrdu o prijenosu već prvenstveno traže brz prijenos. Stoga nije moguće efikasno koristiti niti metode obrane zasnovane na ograničavanju brzine propuštanja UDP mrežnih paketa.

4.1.8. Targa3 napadi

Između ostalih, jedan od poznatijih napada zasnovan na fragmentacijama paketa naziva se Rose napadem. Ovim napadom se stvaraju samo prvi i zadnji paket. Ranjivi sustav očekuje i ostale pakete pa rezervira resurse za obradu i postavlja se u stanje čekanja. Ukoliko su svi resursi u tom stanju, niti...
jedan legitiman zahtjev neće biti obrađen. Ciljni port pri tome uopće nije važan jer se prikupljanje paketa radi na nižoj razini od one na kojoj se radi interpretacija njegova sadržaja. Slično vrijedi za izvornu IP adresu čijim se lažiranjem može samo dodatno otežati detektiranje izvora napada.

New Dawn napad se zasniva na prethodno opisanom *Rose* napadu, ali radi se o nešto složenijoj izvedbi. Fragmenti se generiraju počevši od prvog do zadnjeg, ali uz manji broj propuštenih dijelova poruke. Računalo koje prima takav nepotpuni slijed paketa alokira dovoljno mjesta za čitavu poruku, ali ju nikada ne prими u potpunosti. Ishod napada je povećano korištenje resursa sustava na štetu legitimnih zadataka koje sustav obavlja.

Starije inačice operacijskih sustava imale su prilično loše implementacije sklapanja primljenih paketa u izvornu poruku pa se često ovim napadima mogo uzrokovati prestanak rada sustava ili ponovno pokretanje istog (*Teardrop* napad).

Moguće rješenje za suzbijanje napada zasnovanih na fragmentaciji paketa, nalazi se u ograničavanju vremena tijekom kojeg se čeka dok nepotpuni niz paketa bude odbačen te u ograničavanju broja ponovljenih zahtjeva za odašiljanjem neprimljenih paketa. Novije implementacije sastavljanja poruke iz paketa ne rezerviraju unaprijed memoriju nego pridošle pakete spremaju u vezanu listu sve dok ne pristignu svi koji čine poruku.

Ostale varijante ovih napada su *SYNdrop*, *Boink*, *Nestea Bonk*, *TearDrop2* i *NewTear*.

4.1.10. Ping of Death napad

Jedan od poznatijih DoS napada je *Ping of Death*. Pretpostavljena veličina ICMP paketa jest 56 okteta. Starije inačice operacijskih sustava poput Mac OS i Windows 95 nisu bile u stanju obraditi ICMP *echo* pakete veće od 1024 okteta. Primitak ovakvih paketa je kod Windows 95 operacijskih sustava uzrokovao pojavu tzv. *Blue Screen of Death* (BSoD), plavog ekrana s prijavom nemogućnosti nastavka rada. Jedan od načina obrane od ovih napada je zasnovan na nedozvoljavanju prolaska ICMP *echo* (tip 8) paketa na vatrozidu. Međutim, kada je to postao učestao način obrade, napadači su se dosjetili odašiljanju *echo reply* paketa te su na taj način zaobilazili obranu i uspješno pretrpavali računala nepotrebnim i beskorisnim podacima. Ipak, danas svi operacijski sustavi posjeduju zaštitu od ovog oblika napada.

4.1.11. Land napadi

Ukoliko napadač pošalje paket s istom ciljnom i izvornom IP adresom radi se o *Land* napadu. Operacijski sustavi koji bi primili ovakav paket, najčešće su prestajali s radom i automatski bi se resetirali. Također, moguće je i uzrokovanje kontinuirane međusobne razmjene paketa između dva odredišta. Obrana od ovih napada nije jednostavna kao što bi se u prvi mah zaključilo. Obrana se sastoji od pravilne konfiguracije vatrozida koja sprečava dolazak ovakvog paketa do sustava kojem je namijenjen.

4.2. Raspodijeljeni napadi

Raspodijeljeni napadi su oni napadi koji su zasnovani na korištenju više računala kao izvora napada, pri čemu jedno računalo predstavljala žrtvu. Napadači pri tome može na određeni način preuzeti kontrolu nad posrednim računalima, ali to nije nužno. Detaljni opis rasploživ je u nastavku ovog poglavlja.

4.2.1. DDoS napadi

Raspodijeljeni napadi nisu namijenjeni aplikacijskom sloju iz jednostavnog razloga što je za napade na aplikacije dovoljno iskoristiti ranjivosti istih, a za to nije potrebna veća količina mrežnog prometa. Ideja ostvarena ovim napadima je ispunjavanje komunikacijskih kanala beskorisnim prometom koji onemogućuje prometovanje legitimnih mrežnih paketa te iskorištavanje velikih količina resursa poslužitelja, računala korisnika i dugih mrežnih uređaja. Navedeno se realizira stjecanjem kontrole nad računalima korisnika Interneta kako bi ih se iskoristilo u svrhu stvaranja mrežnog prometa. Neki od poznatih alata korišteni za izvršavanje DDoS napada su MyDoom, Sub7Server, Trin00, Stacheldraht i TFN (Tribe flood network). Na slici Slika 5 prikazan je načelna rad napada uz korištenje Sub7Server alata na zombi računala područja koja je napadaču IRC poslužitelja kao poveznice između napadača i zlonamjernog alata.

Slika 4: Zombi računala kontrolirana od strane napadača

Slika 5: Korištenje IRC poslužitelja kao veze između napadača i izvođača napada (zombi računala)

Slika 6 prikazuje odnose količina prometa generiranih DDoS napadima te primjenu na napadnuto računalo odnosno usmjerivač kojim je napadnuto računalo povezano na Internet. Na slici je debljina strelica između pojedinih računala i usmjerivača proporcionalna količini mrežnog prometa između njih.
Iz slike Slika 6 je očito kako velike količine prometa s Interneta dolaze do usmjerivača mreže kojoj pripada žrtva. Svi oni paketi koji ne budu bili proslijeđeni u bilo kojem smjeru, biti će odbačeni. U navedeno su uključeni i legitimni paketi što dovodi napadnutu mrežu u stanje neispravnog funkcioniranja. SYN, ACK i Fragment napadi, opisani u prethodnim poglavljima, izvode se korištenjem raspodijeljenih izvora te na taj način stvaraju mnogo veće količine prometa nego bi to mogao samo jedan napadač čak i uz veliku brzinu veze prema Internetu. Napadi mogu uključivati i slanje poruka elektroničke pošte na jednu ili više adresa (navedeno kod napada na aplikacijskom sloju), a tada im najčešće nije potrebna kontrola napadača. Primjer su brojni crvi (eng. worm) koji se šire različitim načinima i odašilju poruke elektroničke pošte nekom specifičnom korisniku ili češće svim korisnicima nadenim pretraživanjem primljenih poruka i adresara. Na ovaj način ne samo da je generiran neželjen skup elektroničkih poruka nego je i povećan promet Internetom zbog potrebe za isporucom istih.

Problemu raspodijeljenih napada mogli bi ISP uređaji stati na kraj ukoliko bi vodili računa o prometu koga stvaraju njihovi korisnici. Nažalost, najčešće oni to ne čine. Ovisno o vrsti napada mogu se stvoriti filtri na usmjerivačima koji povezuju napadnuti mrežni segment i Internet. Zadatak tih filtra bio bi odbacivanja neželjenog prometa koji mu pristiže s Interneta i namijenjen je nekom računalu na njegovoj mreži. Pravilna konfiguracija vatrozida, korištenje antivirusnih aplikacija na korisničkim računalima (potencijalnim zombijima) i izbjegavanje javnog objavljivanja adrese elektroničke pošte, koraci su koji mogu spriječiti ili barem umanjiti ishode napada. Na napad se može početi sumnjati već pri prvim pojavama uspoređenja mrežnog prometa, nedostupnosti nekog web sjedišta (stranice), nemogućnosti pristupa bilo kojoj web stranici i sl.

4.2.2. DRDoS napadi

DRDoS napadi se zasnivaju na uspostavi veze u tri koraka. Napadač (ili skupina napadača) stvara TCP paket s postavljenom SYN zastavicom kako bi inicirao vezu prema nekom postojećem računalu na Internetu. Međutim, paket je tako oblikovan da je na mjesto izvorne adrese postavljena IP adresa žrtve. SYN paket dospijeva na odredište, a ono odgovara na adresu iz izvorišnog polja. Ukoliko poslužitelj može uspostaviti vezu, paket s postavljenim SYN i ACK zastavicama biva odaslan prema žrtvi. Jednako tako moguće je za odašiljanje ICMP paketa koristiti potpuno istu logiku. Tada će ECHO REPLY paketi zatrpavati žrtvu. Razlog uspjeha ovih napada se nalazi u tomu što se ne generira veća količina podataka na pojedinim posrednim računalima od kojih se odbijaju paketi pa nema nikakve sumnje u odvijanje napada. Privremeno rješenje u slučaju napada bila bi izmjena IP adrese žrtve ukoliko se radi o poslužitelju i promjeni odgovarajućih zapisa u DNS poslužiteljima. Moguće je i postaviti filtriranje na odgovarajućim usmjerivačima ukoliko dolazni paketi imaju neko zajedničko svojstvo. Ukoliko je napad privremeni i jednokratni isplati se i povećati resurse i odolijevati napadu dok ne prestane iako to nije optimalno rješenje. Najbolja opcija je pripremiti se za napade unaprijed ukoliko se radi o važnoj usluzi koja mora biti neprekidno dostupna, rezervirati rang IP adresa kako bi se relativno brzo nakon detektiranja napada moglo prijeći na korištenje novih adresa i sl.

5. Zaštita od DoS napada
Ovisno o tomu na koji su sloj napadi usmjereni, moguće je u manjoj ili većoj mjeri utjecati na njihovo suzbijanje. Budući da se različiti oblici uskraćivanja usluga u okviru istog sloja ne zasnivaju na istim tehnikama i ranjivostima, nije ih moguće spriječiti ili umanjiti na jedinstven način. Za optimalnu obranu potrebno je napraviti što jasniju podjelu istih i tražiti rješenja za onemogućavanje pojedinih, te načine obrane podjeliti u što jednostavnije cjeline. Kao u i ostalim životnim sferama, prevencija je najjednostavniji i najlakši način obrane od DoS napada s najmanje posljedicom. Međutim, obzirom da nije moguće predvidjeti sve oblike DoS napada, u ovom poglavlju su obrađeni i tehnički načini sprečavanja ili umanjivanja ishoda u situacijama kada su napadi u tijeku. Kao što je već spomenuto prethodno u dokumentu, DoS napadi na aplikacijskoj razini mogu biti izrazito teški za uočavanje, a time i za sprečavanje. Razlog tomu je nemogućnost razlikovanja mrežnih paketa sa zlonamjernim sadržajem i predajnikom. Obrana od ove vrste napada mora se temeljiti na nekim drugim metodama, prvenstveno na redovitoj primjeni zakrpa i instalaciji odgovarajućih nadogradnji. Načini obrane na mrežnom sloju mogu se analizirati pažljivom podjelom svih potrebnih aktivnosti, a takav pristup opisan je u nastavku ovog poglavlja. Ovi napadi su mnogo lakše uočljivi od napada na...
aplikacijskoj razini jer uglavnom uključuju povećane količine mrežnog prometa, neuobičajene mrežne pakete i sl.

Naputci za uspješnu obranu od DoS napada:
- pravilno konfigurirati vatrozid,
- primijeniti odgovarajuće zakrpe za obranu od napada pretrpavanjem SYN paketima,
- onemogućiti nepotrebne i nekorištene servise,
- omogućiti ograničenja diskovnog prostora za pojedine korisnike,
- napraviti procjenu legitimnog korištenja resursa za lakšu detekciju napada,
- redovno provjeravati fizičku ispravnost svih resursa,
- koristiti alate za detekciju izmjena konfiguracijskih datoteka,
- investirati u kupovinu i izgradnju pomoćnih uređaja koji bi se koristili tijekom napada,
- investirati u sigurnu izgradnju mrežne infrastrukture kako bi se povećala tolerancija na pogreške,
- redovito izrađivati sigurnosne kopije sustava ili njihovih najvažnijih dijelova,
- pažljivo osmislićite načine dodjele zaporki, dozvola i sl.

5.1. Prevencijske strategije

5.1.1. Pripreme za napad

Vrlo često se smatra kako se loše stvari događaju drugim ljudima ili organizacijama te se zaštiti od različitih napada ne posvećuje dovoljna pozornost. Često odgovorne osobe posvećuju dovoljnu pažnju sigurnosti računalnih resursa tek nakon što ih pogode određeni oblici računalnih napada. Ovakav pristup obrani od DoS napada u potpunosti je pogrešan. Osim mogućih visokih troškova za organizacije, jedan od razloga zašto je prevencija važna je i jednostavnost izvođenja DoS napada pa iste danas mogu izvoditi i djeca koja malo više vremena provode na Internetu. Bez planiranja unaprijed, razmjerni napada mogu biti jako veliki. Za slučaj napada potrebno je imati pripremljene procedure, odnosno načine reakcije kada napad započne te pripremljene dovoljne količine ljudskih i tehnoloških resursa koji se mogu dovesti u stanje potpunog funkcioniranja u vrlo kratkom roku.

5.1.2. Procjena usluga koje bi mogle biti metom napada

Za efikasnu obranu potrebno je odrediti usluge koje pripadaju najrizičnijoj kategoriji i za koje je najveća vjerojatnost da će biti metom DoS napada. U organizacijama se uglavnom koristi ista veza prema Internetu za odlazni i dolazni web promet, primanje i slanje poruka elektroničke pošte, DNS upita, povezivanje podružnica organizacije kod neke specifične usluge ili za razne druge usluge. U slučaju odvijanja napada, npr. pretrpavanjem poruka elektroničke pošte, istodobno će i sve ostale usluge pretrpjeti posljedice nepravilnog funkcioniranja računalne mreže. Stoga je potrebno odrediti prioriteti pojedinih usluga kako bi im se u izvanrednim okolnostima mogla dati dozvola za korištenje preostalih funkcionalnih resursa.

5.1.3. Suradnja s davateljem Internet usluga

O suradnji s davateljima Internet usluga (ISP) ovisi uspjeh u obrani od nekih napada zasnovanih na uskraćivanju usluga. Naime, s obzirom da su mrežni uređaji poput usmjerivača koji su u posjedu ISP-a bliže izvoru napada nego je žrtva, tada bi oni mogli biti točka obrane od nadolazećeg zlonamjernog prometa mrežom te na taj način spriječiti dolazak istog do žrtve kojoj je prvenstveno i namijenjen. Najčešće su te tvrtke pripremljene za većinu mogućih napada pa ih se može primijeniti kao primjer u osmišljavanju procedura za obranu na korisnikovoj strani. Naime, napadi na korisnika u velikoj se mjeri tiču njegovog davatelja Internet usluga jer time opterećuju i ostali legitimni promet.

5.1.4. Organiziranje rezervnih resursa

U trenutku kada napad započne sva sredstva moraju biti dostupna i pripravna za uporabu. Povećanje propusnosti komunikacijskih kanala, postavljanje zamjenjivih poslužitelja za upravljanje prometom i slične aktivnosti moraju biti poduzete u što kraćem roku.
5.1.5. Postupci u slučaju napada
Jasno i suvislo definirani postupci u slučaju napada moraju postojati kod davatelja Internet usluga i kod krajnjeg korisnika – potencijalne žrtve. ISP može osigurati pomoć u osmišljavanju postupaka koji će se izvršavati u trenucima napada. Tehnička služba korisnika treba biti svjesna odgovornosti koja je pred nju postavljena u vezi obrane, ali i u postupcima prijave napada davatelju usluga. Kod raspodijeljenih napada najčešće izvori stvaranja zlonamjernih paketa pripadaju većem broju organizacija koje posjeduju pojedine mrežne segmente pa je i te organizacije potrebno kontaktirati i upozoriti na događanja. Dodatno, moguće je prijaviti policiji napad ili pokušaj napada te im prepustiti odgovornost nalaženja krivca.

5.1.6. Osiguranje
Kada je dostupnost usluge važna za poslovanje tvrtke ili organizacije, moguće je sklopiti ugovor s osiguravajućom tvrtkom koja bi u slučaju napada isplaćivala ugovorene naknade. Naravno, osiguravajuće tvrtke pri tome mogu zahtijevati od organizacije primjenu određenih oblika zaštite od računalnih napada.

5.2. Tehničke strategije
5.2.1. Detekcija napada
Napade na mrežnom sloju može se otkriti na različite načine što ovisi o vrsti napada. Napadi koji se temelje na posebnom oblikovanju mrežnih paketa ili na neurobičajenom protokolu, prilično se jednostavno otkriju. Mnogo teže je otkriti napade koji se izvršavaju u vezi obrane, ali i u postupcima prijave napada davatelju usluga. Kod raspodijeljenih napada najčešće izvori stvaranja zlonamjernih paketa pripadaju većem broju organizacija koje posjeduju pojedine mrežne segmente pa je i te organizacije potrebno kontaktirati i upozoriti na događanja. Dodatno, moguće je prijaviti policiji napad ili pokušaj napada te im prepustiti odgovornost nalaženja krivca.

5.2.2. Filtriranje mrežnog prometa na usmjerivačima
Napotrebni mrežni promet bi trebao biti odbačen već na usmjerivačima kako ne bi uzalud iskorištavao resurse mrežnih segmenta kojima nije potreban niti namijenjen. Na primjer, mehanizam koji onemogućuje pristupovanje paketima s postavljenom SYN zastavicom bi trebao biti implementiran na uređaju koji se nalazi na ulazu paketa u mrežni segment organizacije, tj. na vatrozidu. Postoje komercijalna rješenja za ovaj slučaj, ali ukoliko se popuni komunikacijski kanal između korisnika i davatelja Internet usluga, tada uređaj ne može komunicirati s Internet uslugama. Filtriranje može biti temeljeno na:
- izvornoj i ciljnoj IP adresi mrežnog prometa i
- vrsti mrežnog prometa.
Ukoliko se radi o jednoj izvornoj adresi za sve dolazeće pakete, odbacivanje temeljeno na ciljnoj i izvornoj adresi je jednostavan proces. U slučaju raspodijeljenog napada (DDoS), organizacija koja daje Internet usluge mora u dogovoru s organizacijama koje posjeduju izvorne mreže blokirati promet koji dolazi s njihovih mrežnih segmenata. Dakako, pitanje je ostvarivosti ovakvog čina jer se na taj način i legitimnim korisnicima onemogućuje pristup pa je moguće da bi takav potez učinio više štete nego koristi.

Davatelji Internet usluga mogu izvršiti odbacivanje mrežnog prometa temeljeno na vrsti prometa. To im omogućuje odbacivanje i propuštanje samo određenih tipova mrežnih paketa. Kada su određene usluge od velikog značaja za krajnjeg korisnika, ISP može dati veći prioritet njima, a pri tome onemogućiti neke manje važne ili odgoditi vrijeme isporuke paketa namijenjenih uslugama s manjim prioritetom.

5.2.4. Segmentacija mrežnog prometa
Kada su identificirane ključne usluge, moguće je razdijeliti iste od onih koje su manje značajne. Ukoliko je, primjerice, dostupnost web stranica ključna za posao, treba razmisliti o poslužitelju na brzoj vezi u posjedu ISP-a. Usluge manjeg značaja, poput elektroničke pošte i FTP poslužitelja mogu biti posluživane i na računalima klijenta. Kod osmišljavanja obrane od različitih oblika DoS napada, potrebno je uočiti usko grlo u sveukupnom sustavu na koje će se napadač najvjerojatnije koncentrirati. Ako je moguće, za sekundarne DNS poslužitelje i poslužitelje elektroničke pošte trebalo bi odabrati računalo domaćin koje je dio nekog drugog mrežnog segmenta odnosno davatelja Internet usluga.

5.2.5. Obrana od napada koji su u tijeku
Kada sustav postane žrtvom napada, jedno od najjednostavnijih rješenja za obranu jest izmjena IP adrese napadnutog računala ako se radi o jednom napadnutom računalu. Zapisi u DNS poslužitelju jednostavno se ažuriraju i time ciljna adresa gomile zlonamjernih mrežnih paketa biva nepostojeća, a oni odbačeni. Ukoliko postoji mogućnost, dobar način obrane bio bi privremeno povećanje resursa i kapaciteta komunikacijskih kanala kako bi napad u što manjoj mjeri utjecao na legitim promet. Dakako, spomenuta solucija nije odgovarajuća za učestale napade, ali kao privremeno rješenje ju svakako treba razmotriti.

Najjednostavnija obrana zasigurno bi bila isključivanje sve opreme s Interneta odnosno uzrokovanje potpune nedostupnosti usluga. Metoda najčešće nije izvediva, ali u iznimnim slučajevima može se primijeniti.
6. Zaključak
Današnji korisnici Interneta su takvi da je, na žalost, potrebno ulagati velike napore u istraživanje Internet sigurnosti i postavljanja odgovarajućih restrikcija kako zlonamjerni korisnici ne bi postigli uspjeh u onemogućavanju rada legitimnih korisnika. Velik dio napada čine i DoS napadi kako na aplikacijskoj razini, tako i na mrežnoj. Izvođenjem DoS napada napadači mogu uzrokovati velike financijske i ostale štete. Činjenica je da su DoS napadi, prisutni u sve većem broju i većim razmjerima, vrlo često izvođeni od strane neupućenih korisnika koji uopće ne razumiju funkcioniranje istih, a često ne shvaćaju niti razmjere problema koje su uzrokovali. S druge strane, prisutni su i drugi duboko upućeni poznavatelji Internet protokola i načina njegova funkcioniranja, koji razvijaju alate namijenjene zlonamjernom korištenju iz različitih razloga.
Dok postoje zlonamjerni korisnici, a uvijek će ih biti, potrebno je razvijati i pomno pripremati obrane od najrazličitijih mogućih napada. Rastom broja korisnika Interneta i povećanjem složenosti njegovih sastavnih dijelova, povećava se i broj potencijalnih napada i njihovi razmjeri. Područje sigurnosti na Internetu sve češća je tema, a njome se bavi sve veći dio stručnjaka iz računalnog svijeta.

7. Reference